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ABSTRACT: Studying chemical reactions, particularly in the gas phase, relies heavily on
computing scattering matrix elements. These elements are essential for characterizing
molecular reactions and accurately determining reaction probabilities. However, the intricate
nature of quantum interactions poses challenges, necessitating the use of advanced
mathematical models and computational approaches to tackle the inherent complexities. In
this study, we develop and apply a quantum computing algorithm for the calculation of
scattering matrix elements. In our approach, we employ the time-dependent method based on
the Møller operator formulation where the S-matrix element between the respective reactant
and product channels is determined through the time correlation function of the reactant and
product Møller wavepackets. We successfully apply our quantum algorithm to calculate
scattering matrix elements for 1D semi-infinite square well potential and on the colinear
hydrogen exchange reaction. As we navigate the complexities of quantum interactions, this
quantum algorithm is general and emerges as a promising avenue, shedding light on new
possibilities for simulating chemical reactions on quantum computers.

In recent years, there have been significant advancements in
the field of quantum information and quantum computing.

Both hardware and software have progressed rapidly, leading to
the development of algorithms for the current quantum
computers. These algorithms show promising results in solving
research challenges that are beyond the capabilities of even the
most powerful conventional supercomputers.1,2 Central to the
efficacy of such algorithms exist fundamental quantum
properties, including superposition, entanglement, coherence,
and interference. Recent advancements in quantum hardware
have spurred a swift surge in the creation of innovative
quantum algorithms.3−7 The predominant focus of algorithmic
development encompasses a diverse array of topics such as
spectroscopy,8−10 electronic structure,11−15 vibrational struc-
ture,16 quantum many-body problems,17,18 and open quantum
dynamics.19,20 Notably, the application of these algorithms to
address scattering problems has received limited attention thus
far. This study aims to bridge this gap by developing a
quantum algorithm specifically designed to estimate scattering
matrix elements for both elastic and inelastic collision
processes.

Quantum scattering calculations play a crucial role in
advancing our understanding of fundamental physical and
chemical phenomena,21 making them highly significant across
diverse scientific disciplines, including the study of chemical
reaction mechanisms in the gaseous phase22 and atmospheric
chemistry.23−25 These calculations are indispensable for the
accurate interpretation of experimental findings in gas-phase
interactions, providing intricate insights into bimolecular
chemical reactions.26 Moreover, quantum scattering theory
serves as a valuable tool for calculating essential parameters like

cross-section and reaction rate in atomic, and chemical physics,
contributing to the study of many scattering processes.27 The
necessity of full-dimensionality in low-energy molecular
scattering calculations underscores their pivotal role in
comprehensively understanding complex molecular interac-
tions. Additionally, molecular scattering experiments, partic-
ularly those conducted under cold28 and ultracold29 con-
ditions, yield unparalleled insights into intermolecular
interactions. A comprehensive understanding of the quantum
dynamics in ultracold environments has the potential to reveal
innovative strategies, possibly employing quantum phenomena
such as superposition, entanglement, and interference patterns
to control reaction outcomes.30−32

There are two ways to approach the quantum scattering
problem in chemical reactions one can employ either the Time
Independent (TI) or the Time Dependent (TD) formalism.
Quantitatively accurate simulations of quantum scattering,
achieved by directly solving the TI Schrödinger equation
through methods like coupled-channel techniques21,26 or basis
set expansion, represents as a computational benchmark.
Various techniques in the time-independent formulation have
been developed to address this issue, such as the S-matrix
version of the Kohn variational principle. This involves
applying a variational principle to determine expansion
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coefficients in scattering coordinates, resulting in a more
efficient and practical approach for quantum scattering
calculations. But in general, the TI approach suffers from the
classic ”curse of dimensionality” problem meaning the
computational scaling scales exponentially as the problem size.

To mitigate this challenge, numerous quantum algorithms
have been proposed in the literature for different applica-
tions,33−35 with many relying on the Quantum Phase
Estimation (QPE) algorithm. However, as QPE is a fault-
tolerant algorithm, its implementation is currently unfeasible
on utility-scale quantum processors. Consequently, its
application is constrained to smaller-scale problem sets.
Recently, Xing et al.36 proposed an innovative solution by
employing the S-matrix version of the Kohn variational
principle to address the scattering problem. This approach
alleviates the intricate task of symmetric matrix inversion
through the utilization of the Variational Quantum Linear
Solver (VQLS).37 VQLS employs a parametrized quantum
circuit that is easier to implement on the Noisy Intermediate-
Scale Quantum (NISQ) devices. Nonetheless, there is a need
for further improvement in the scalability of VQLS on Noisy
Intermediate-Scale Quantum (NISQ) devices and the train-
ability of the variational ansatz, especially when addressing
larger and more complex problems. In TD formalism of
quantum scattering problem, wavepackets are constructed and
allowed to evolve using the time-dependent Schrödinger
equation. TD methods present the ability to extract
information across a range of translational energies in a single
computational iteration and exhibit superior scalability
compared to their TI counterparts. Furthermore, TD methods
offer a more comprehensive understanding of dynamic
processes, enabling the investigation of time-evolution
phenomena in scattering events. This aspect becomes
particularly crucial for reactions involving the formation of
new chemical bonds. Despite these potential advantages, as of
our current knowledge, there is no existing quantum algorithm
based on the TD formalism38 for the scattering problem.

Here we propose a TD Quantum Algorithm based on the
Møller operator formulation of the S-matrix.39,40 The
fundamental technical procedure involves dynamics41,42 of
two wavepackets: one representing an asymptotic reactant
localized in a single reactant channel, and the other
representing an asymptotic product localized in a single
product channel. The selection of specific reactant and product
channels dictates the S-matrix elements to be computed. These
wavepackets are then advanced toward the interaction region,
one forward (reactant) and the other backward (Product) in
time. Subsequently, the resulting reactant and product
wavepackets are transformed into a common representa-
t i o n , 3 8 , 4 3 a n d t h e c o r r e l a t i o n f u n c t i o n

= | { }| +C t iHt( ) exp, is calculated between their

subsequent time-dependent evolution. Where, | and | +
corresponds to the product and reactant Møller states in the γ′
and γ channel, and H represents the total Hamiltonian.
Calculation of the correlation function is the core computa-
tional capability of the proposed quantum algorithm and we
employ a modified version of the Hadamard test to estimate
the correlation function. Hadamard test is a key Quantum
algorithm that is extensively used15 to estimate the expectation
value of operators. The Møller operator formalism is then
employed to express S-matrix elements between the chosen
reactant and product channels in terms of the Fourier

transform of the correlation function computed. This
expression enables the computational effort to be efficiently
directed toward computing only the S-matrix elements that are
of interest. We discuss the theoretical and computational
details in the further sections.

■ TIME DEPENDENT FORMULATION OF THE
SCATTERING MATRIX

Asymptotic reactant state in the γth arrangement channel is
represented by | in and the channel Hamiltonian Ho governs
the asymptotic dynamics of the reactant state wavepacket.
Assuming Ho is time-independent evolution of the reactant
state wavepacket is given by

| = { }|x t iH t x( , ) exp ( , 0)in o in (1)

In all the derivations we assume atomic units.
The wave function | x t( , )in can be represented in the |xγ⟩

= |rγ⟩|Rγ⟩ coordinate representation where |rγ⟩ and |Rγ⟩
represents internal quantum state and relative position of
reactants, respectively. Additionally, the center of mass
(COM) is stationary in the coordinate representation and
the asymptotic Hamiltonian is separable in two parts

= +H H Ho rel int, here Hint and Hrel correspond to Hamil-
tonians which govern the internal dynamics and relative
motion, respectively. Eigenfunctions of |H k( )rel and |H ( )int
spans the γth channel momentum representation. Thus, the γth
channel momentum representation is given by |kγ, γ⟩ = |kγ⟩|γ⟩
and the incoming wavepacket is conveniently expressed in the
momentum representation. Similarly, an asymptotic product
state | out belongs to the γ′th channel Hilbert space. In this
scenario, the channel label γ′ specifies the product arrangement
channel along with all the internal quantum numbers of the
products. The asymptotic dynamics of the product wavepacket
is entirely governed by the γ′th channel Hamiltonian Ho . The
asymptotic Hilbert space is constructed as the direct sum of all
individual channel Hilbert spaces, playing a pivotal role in
achieving a complete representation of the scattering operator
S.

Near the interaction region, the dynamics of the wavepacket
localized in γth channel is controlled by the complete
Hamiltonian = +H H Vo , where V denotes the interaction
potential. The isometric Møller operator is defined as

= [ { } { }]± iHt iH tlim exp ( ) exp ( )
t

0 (2)

Møller operator mentioned in eq 2 is fundamentally a
composition of time evolution operators, with one correspond-
ing to the asymptotic Hamiltonian of the γth channel Ho and
the complete Hamiltonian H. Given an asymptotic state
| in out( ) at time t = 0 the impact of applying Møller +( )
involves backward(forward) propagation to time t = τ =
−∞(+∞) under the asymptotic Hamiltonian Ho followed by
forward (backward) propagation under the full Hamiltonian H
from t = −τ(+τ) to t = 0. In the coordinate representation, the
asymptotic time limit τ is the time required to propagate wave
function from the interaction region to the asymptotic
region.44 In brief the impact of Møller operator on |kγ, γ⟩ is
to create a new set of states |kγ, γ ± ⟩

| = [ { } { }]|± iHt iH tlim exp ( ) exp ( )
t

in out0 / (3)
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| = |
+

±dk k k( ) ,in out( ) (4)

While computing the S matrix elements in the momentum
representation it is crucial to note an important property of the
basis vectors of the γth channel. These basis vectors form an
eigenbasis for their respective asymptotic Hamiltonians Ho and

the eigenvalues corresponding to |kγ, γ⟩ is + E
k

2

2

. Here k

2

2

corresponds to the relative kinetic energy and Eγ relates to the
internal energy. One can use the intertwining relation

=± ±H Ho to show that the |kγ, ± γ⟩ basis set forms an
eigen-basis for H with the eigenvalues that corresponds to |kγ,
γ⟩.39 The correlation function between the Møller states is
defined in eq 5. One can obtain the correlation function using
two different approaches, in the first approach | + is
propagated under the full Hamiltonian H from time t = 0 to
t = τ and take an inner product of the resulting propagated
wavepacket with the product Møller state | . In an
alternative approach the time evolution operator

{ }iHt(exp ) can be applied symmetrically, first | is
propagated from t = 0 to t = −τ and then | + from t = −τ
to t = τ.40 The scattering matrix elements can be expressed in
terms of the Fourier transform of the calculated correlation
function (discussed further in the Supporting Information).

= | { }| +C t iHt( ) exp ( ), (5)

■ QUANTUM CIRCUIT IMPLEMENTATION
The quantum algorithm focuses on computing the correlation
function Cγ′,γ described in eq 5. While the conventional
Hadamard test, can determine the expectation value of an
operator U defined as ⟨Ψ|U|Ψ⟩, it is not capable of calculating
the correlation function. The reason behind this limitation is
that the correlation function, unlike a straightforward expect-
ation value, involves a computation similar to assessing the
overlap (⟨Ψ1|Ψ2⟩) between two quantum states, |Ψ1⟩ and |Ψ2⟩.
Where | = |1 and | = { }| +iHtexp ( )2 . To calculate
the state overlap (⟨Ψ1|Ψ2⟩) a slight modification is required in
the conventional Hadamard test. We define operators Oγ (Oγ′)
such that when we operate them on the vacuum state (|000···⟩)
they prepare |Ψ1⟩ (|Ψ2⟩) quantum states.

= +O t e e e U( ) iHt iH iH
r

o o o (6)

= +O e e UiH iH
p

o o o (7)

In eq 6 operator Ur corresponds to a state preparation that
transforms the initial vacuum state into the asymptotic reactant
channel wavepacket | in similarly Up in eq 7 is defined such
that | = |U 000 ...out p . Similar to the Hadamard test here we
have two quantum registers Ancillary qubit qa that stores the
information about the correlation function and qubit qs that
stores and manipulates the quantum state. We first apply the
Hadamard operation on the ancillary qubits (followed by a
phase gate S† if the objective is to calculate Im(Cγ′,γ(t))). Next,
we apply two controlled operations which are at this
algorithm’s core, as shown in Figure 1. In the first controlled
operation, we operate the controlled version of the operator Oγ
eq 6 with ancillary qubit qa as a control and the state qubit qs as
a target with the control state ’ |1 qa

’. This means that the
operator Oγ will operate on the state qubits qa only when the
quantum state of the ancillary qubit qa is |1⟩. Similarly we apply
another controlled version of the Oγ′ operator (eq 7) with the
ancillary qubit qa as control and the control state ’ |0 qa

’. Finally,
we apply the Hadamard operation and measure the ancillary
qubit is measured in the σz basis.

The wave function is expressed in the momentum
representation eq 4 on qs and binary encoding45 is used to
map it to the qubit wave function. Please refer to the
Supporting Information to get detailed information about the
qubit mapping. The wavepacket propagation including the
Hamiltonian encoding is done in first quantization by
expressing the asymptotic Ho and total Hamiltonian H in
the momentum representation basis and then expressing the
Hamiltonian as a linear combination of Pauli strings. The
propagators { ± }iHtexp ( ) can be approximated by employing
higher order Trotter-Suzuki decompositions.46 For the second-
order Trotter-Suzuki approximation of the time evolution
operator corresponding to the Hamiltonian = =H hj

L
j1 the

number of gates scales as shown in eq 8. Where, n, L, ϵ and Λ
corresponds to the number of trotter steps, the number of
Pauli terms in the expansion of the Hamiltonian, approx-
imation error and the maximum eigenvalue of the operators.
Higher precision requires increasing n and extending
simulation time t, resulting in a larger Ngates, thus, this
algorithm can be categorized into Fault-Tolerant Quantum
Algorithms. Additionally one can use the Qiskit47 Open Source

Figure 1. Quantum circuit that calculates the correlation function Cγ′,γ(t) defined in eq 5. The circuit includes two quantum registers a single qubit
ancillary register which is measured and stores information about the correlation function and Nq qubit quantum register that encodes and
manipulates the quantum state.
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Software Development Kit (SDK) to simulate these quantum
circuits (For further details regarding the gate count and
quantum simulation, please refer to the Supporting Informa-
tion).

N
nL t( )

gates

5/2 3/2

(8)

■ APPLICATIONS
A One-dimensional Semi-infinite Well. Evaluating the

effectiveness of a new technique often involves applying it to a
problem with a well-established analytical solution. In this
section, we employ the proposed quantum algorithm to
determine the scattering matrix element for a two-nucleon
scattering problem. Previous studies48 have demonstrated that
the widely utilized 1S0 Argonne V18 (AV18) potential49 which
plays a crucial role in describing nucleon−nucleon interactions
and is among the most commonly used potentials, can be
effectively approximated by a semi-infinite square well with
dimensions resembling those of the original potential as shown
in Figure 2.

The functional form of the reactant and product wave-
packets at time t = 0 in the coordinate representation is given
in eq 9. The reactant/product wavepackets are defined as a
Gaussian centered at x = xo with the spread of Δxo and
traveling with the momentum of ko. The same wave function
can be expressed in the momentum representation as shown in
eq 10. From Heisenberg’s uncertainty principle, it is clear that
an increase in the Δxo spread in the coordinate space results in
a decrease in the momentum representation and vice versa.

i
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(9)

i
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x
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2
exp ( )in o o o

0
2 1/4

2 2

(10)

Parameters are chosen carefully for eq 10 such that the
wavepacket should only contain either positive or negative
contribution of the momentum else the wavepacket splits up
(For more information please refer to the Supporting
Information). Figure 3 plots the scaled potential V(x) and

the amplitude of the reactant and product Møller states in the
position representation. Figure 3 shows that none of the wave
packet is present within the potential, so there is no need to
perform the initial propagation of the wave-packets to the
asymptotic limit under the channel asymptotic Hamiltonian
and subsequent back-propagation under the full channel
Hamiltonian (eq 2). Thus, in this specific scenario, these
states already correspond to the Møller states as outlined in the
eq 3. Figure 4 plots the amplitude of the reactant (Azure) and
product(Orange) Møller states in the momentum representa-
tion. In the legend +, k subscript + (−) corresponds to
reactant(product) Møller state and the superscript + (−)
corresponds to the sign of contributing k values. The reactant
Møller state has contributions from negative values of k and
would propagate toward the interaction region and interact
with the semi-infinite well.

Referring back to the TD theory of reactive scattering
discussed in section we clearly see that there is no internal
degree of freedom and we can represent the initial wavepackets
eq 10 in the plane wave basis and get the η±(k) values and the
Hamiltonian matrix (H = T + V) which can be expressed as a
linear combination of Pauli matrices. Since we are working
with the plane wave basis the Kinetic Energy (KE) T matrix
will be diagonal and easier to implement. We discretize the x
and k space in 256 grid points since we encode the initial wave

Figure 2. Semi-infinite square well approximation of the 1S0 potential
(Orange Curve). The potential is divided into three different regions,
Region I (x ≤ 0.65fm), Region II (0.65 < x ≤ 1.65), and Region III x
≥ 1.65fm.

Figure 3. Absolute value of the Møller states | ± )x in the position
representation eq 9. The potential V(x) is also shown in the solid
Azure curve. The potential Absolute values of the wavepacket are
scaled by the factor of 0.1 and 15 respectively.
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function using binary encoding this problem requires 8 qubits
(log2(256)) to encode the wave function. Since we are already
starting from the reactant and product Møller states the
operators Oγ(t) and Oγ′ defined in eq 6 and eq 7 reduces down
to e−iHtUr and Up respectively.

The correlation function in this example is defined as
= + | { }|+ +C t iHt( ) expk k

k k
, . In order to calculate the

correlation function at time t we need to propagate the
reactant Møller state until time t and take the inner product
with the product Møller state. Figure 5(a) the peak of the wave
packet has progressed toward the interaction region and since
the wavepacket is composed of a range of different k values the
wavepacket gets broadened (Since, V(x) = 0 in this region).
However, no informative data has been gathered at this stage,
as the wave packet has not yet entered the interaction region.

The quantum simulation results can be obtained by creating a
quantum circuit that only uses the state preparation |qr⟩
quantum registers, and initiate the reactant Møller state, then
we apply the propagator and implement this quantum circuit
using the state vector simulator in Qiskit.

Figure 5(b) shows the scaled absolute value of the reactant
propagated wavepacket at t = 0.24τv The wave packet’s higher
momentum components have now entered the interaction
region, engaging with the barrier. In the course of this
interaction, the overall energy within the well area rises,
characterized by an exchange of kinetic energy for potential
energy. No observable signs of bifurcation are evident. It is
evident from Figure 5(c) that at time t = 0.56τv the wavepacket
postcollision begins to exit the interaction region, having
acquired information about the potential. Concluding at t =
0.97τv in Figure 5(d) the calculation is essentially complete,
with only the lower momentum components yet to exit. The
correlation function C−k,k(t) is plotted in Figure 6 from the
figure it is evident that the correlation function was initially
zero since the wavepackets were propagating in the opposite
directions but once the reactant Møller state gets reflected
from the semi-infinite well the correlation function becomes
significant and as soon as most of the reflected resultant
wavepacket leaves the region around time 1.25 τv the
correlation function becomes zero and stays the same.

Figure 7 plots the amplitude of the scattering matrix
element. Since the entire waveform should be reflected from
the potential barrier we anticipate the scattering amplitude
should be equal to one. However, the lower sampling rate fails
to align with this expectation due to a suboptimal choice of
step size. The lower sampling rate, approximately two samples
per femtometer, implies that the square well takes on more of a
trapezoidal shape rather than a square one.

Figure 4. Absolute value of the reactant | + )k and product |+ )k

Møller states in the momentum representation eq 10.

Figure 5. Scaled absolute value of the Møller states | ± )x in the position representation eq 9. The potential V(x) is also shown in the solid Azure
curve. Blue curve: product Møller state, Red curve: propagated reactant Møller state at time (a) t = 0.12,(b) t = 0.24,(a) t = 0.56 and (a) t = 0.97.
Yellow circles: Quantum simulation of the reactant Møller state propagation.
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Addressing this limitation, increasing the sampling rate by
higher orders of magnitude rectifies the issue, and the
anticipated scattering amplitude of one should be achieved.
It is essential to note that both solutions reveal a ringing effect
at the upper and lower energy limits, which remains consistent
regardless of the sampling rate. The occurrence of this ringing
phenomenon is attributed to the division by the product of the
expansion coefficients η±(k(E)), known for their small values
in this energy region. In the next example, we include
vibrational degrees of freedom and apply the proposed
algorithm to calculate scattering matrix elements and reaction
probabilities of the colinear hydrogen exchange reaction.
Colinear Hydrogen Exchange Reaction. Given its

simplistic nature H + H2 chemical reaction is conventionally
recognized as the ”Hydrogen atom50 of chemical reactions”
and has held significant importance in theoretical chemistry. In
1929 London, Eyring, and Polanyi demonstrated the existence
of a potential energy barrier51 to the reaction by providing an
approximate solution to the electronic Schrödinger equation.
Since then the availability of better computational tools along
with precise theoretical models fueled the advancement of the
field forward which eventually helped to understand different
experimental observations.52

+ +H H H v H H v H( ) ( )a b c a b c (11)

In this section, we employ the proposed quantum algorithm
to calculate scattering matrix elements of the colinear hydrogen
exchange reaction eq 11. The reaction involves in-elastic
scattering between the distinguishable hydrogen atoms and a
hydrogen molecule. Hydrogen exchange happens during the
chemical reaction where one of the hydrogen atoms substitutes
another hydrogen atom. Rotationally averaged scattering
matrix components are calculated using the time-dependent
technique based on the Möller operator formulation of
scattering theory (Section). In this chemical process, it proves
beneficial to consider three coordinate systems as depicted in
Figure 8. The coordinates R1, r1 (R2, r2) are ideally tailored for

describing dynamics within the reactant (product) arrange-
ment channel I (II). In channel I the dynamics is solely
governed by the asymptotic Hamiltoninan H0

(1) eq 12 (Which
is separable into translation between Ha and COM of HbHc +
Internal vibration in HbHc). In a similar fashion coordinates
labeled R2 and r2 in Figure 8 best describes the dynamics in the
product channel HaHb(v′) + Hc and in the large limit of R2 the
dynamics is explained by asymptotic hamiltoninan H0

(2) eq 13
(Which is separable into translation between Hc and COM of
HaHb + Internal vibration in HaHb).

= +H R r H R H r( , ) ( ) ( )rel vib0
(1)

1 1
(1)

1
(1)

1 (12)

= +H R r H R H r( , ) ( ) ( )rel vib0
(2)

2 2
(2)

2
(1)

2 (13)

Figure 6. (a) Real and (b) Imaginary contributions to the correlation function at time t. The solid blue curve corresponds to the classical
simulation results and the orange discrete points is the result from quantum simulation.

Figure 7. Amplitude of the Scattering matrix element S−k,k(E). The
blue curve corresponds to classical numerical calculation, the dashed
orange curve denotes the exact expected analytical result and the red
circular markers represent the result from the quantum simulation.

Figure 8. Illustration showing linear arrangement of the three
distinguishable Hydrogen atoms Ha, Hb abd Hc. Reactant channel (R1,
r1) and product channel (R2, r2) coordinates are along with the bond
coordinates (X, Y) are shown. The arrow denotes the direction
Hydrogen atom Ha is traveling.
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The third coordinate system X and Y as shown in Figure 8 is
used to describe Hamiltonian in the interaction region. Being a
colinear system the transformation is straightforward is given
by the relation eq 14.53 The dynamics in the interaction region
are governed by the kinetically coupled Hamiltonian54

described in eq 15. pX and pY represents momentum in the
bond coordinates and V(X, Y) denotes the Liu-Siegbahn-
Truhlar-Horowitz (LSTH)55−57 potential energy surface
(PES) as shown in Figure 9.
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The reactant wavepacket is created by calculating the direct
product between an arbitrary linear combination of one-
dimensional plane waves characterizing the relative motion of
the atom Ha and the diatom HbHc(v), and a single vibrational
eigenstate, (v) of the diatom HbHc. Similarly, an outgoing
channel wavepacket that corresponds to HaHb(v′) + Hc is
calculated as a direct product between an arbitrary linear
combination of one-dimensional plane waves characterizing
the relative motion of the atom Hc and the diatom HaHb(v′)
and a single vibrational eigenstate, (v′) of the diatom HaHb.
The reaction channel wavepacket | in

1,0 at time t = 0 is created
by directly multiplying the translational and vibrational wave
functions. In eq 16 N corresponds to the normalization
constant, the superscript in ψγ,v denotes the channel γ and
vibrational quantum number of v, A slice of LSTH- PES taken
at a large value of R1 defines the asymptotic diatomic potential.
H r( )vib

1
1 is expressed in the Morse eigenbasis and diagonalized

to extract the vibrational wave function | r( ( ) )vib
1,0

1 . The
product channel wavepacket can be defined in a similar fashion
(Please refer to the Supporting Information).

| = | +R r N r e( , ) ( )in vib
k R R ik R R1,0

1 1
1,0

1
( ) ( ))1

2
1 1

0 2
1
0

1 1
0

(16)

We calculate S-matrix elements for the two inelastic
exchange reactions, where we start with v = 0 in the reactant
wavepacket and v′ = 0, 1 in the product wavepackets. In this
case, 10 qubits are required to represent the quantum state in
the algorithm (2 qubits correspond to vibrational encoding and
the rest to represent ± ]k2 ( )8 . The quantum algorithm is
executed at each time t and the correlation function is
calculated between the reactant | +( ) and product |( )
Møller states. Figure 10(a) (Figure 10(c)) shows the
correlation function for Ha + HbHc(v = 0) → HaHb(v′ =
0(1)) + Hc case. It is evident that the quantum simulation
results go well with the exact classical simulation. The Fourier
transform of the calculated correlation function is used to
calculate scattering matrix elements. Figure 10(b) and Figure
10(d) plots the transmission coefficient or the reaction
probability which is defined as the absolute value square of
the co r r e spond ing s c a t t e r i ng ma t r i x e l emen t s

= | |+P E S( )v v k k
v v

, ,
, 2. These computations offer an authentic

portrayal of the reaction dynamics, capturing all the important
aspects of the reaction probabilities. As established in prior
research,58 the interplay between direct and resonant
components plays a pivotal role in shaping the overall curves
depicted in Figure 10(b). The abrupt fluctuations around 0.6
and 1.0 eV arise due to the existence of internal excitation
resonances at these energy levels.

■ CONCLUSION
In this study, we introduced a quantum algorithm based on the
TD Møller to compute scattering matrix elements for both
elastic and inelastic scattering processes. To address the
requirements for calculating the correlation function, we
developed a Modified Hadamard test. The proposed algorithm
was successfully applied to two distinct physical problems.
Initially, we tackled the 1D semi-infinite well, serving as an
approximation for the AV18 1S0 2-nuclei scattering potential.
Subsequently, we extended the application to the colinear
Hydrogen exchange reaction. Remarkably, the quantum
simulation results demonstrated excellent agreement with
classical results in both cases.

Moreover, the algorithm presents two significant sources of
errors deserving careful consideration. The first originates from
sampling errors associated with the Hadamard test. This error
is tied to the estimation of the expected value of the correlation
function based on a finite number of sample measurements.
Through the application of Chernoff bound,59 we established
that the required number of samples to estimate the expected

value with an absolute error ϵ scales as ( )1
2 .

The other source of error comes from the Trotter-Suzuki
approximation of the propagator iHt(exp( )). Accurately
assessing Trotter approximation errors is crucial for optimizing
Hamiltonian simulations. Efforts60 have been made to devise a
theory that leverages the commutativity of operator summands
to yield more tighter error bounds. Despite these endeavors,
challenges persist due to the intricacies involved in obtaining
analytical expressions for the error bounds and understanding
the impact of the approximation on quantum simulation errors.
In the future, we would like to extend this formalism from the
colinear Hydrogen exchange to include the rotational aspect in

Figure 9. Illustration showing probability density || |X Y( ( , ) )in
1,0 2 at

time t = 0 of the reactant channel wavepacket described in eq 16. The
contour plot of the LSTH PES is also shown.
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the scattering process. This would open up new avenues to
deeply understand molecular processes that exhibit quantum
coherent control.
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